
MODERN TECHNIQUES

FOR SOLVING BOOLEAN

SATISFIABILITYSATISFIABILITY

GRASP

� Learn from the mistake that led to the conflict and
introduces additional implicates to the clause database
only when it stumbles.

� Conflict diagnosis produces three distinct pieces of
information that can help speed up the search:

1. New implicates that did not exist in the clause
database and that can be identified with the
occurrence of the conflict. These clauses may be
database and that can be identified with the
occurrence of the conflict. These clauses may be
added to the clause database to avert future
occurrence of the same conflict and represent a
form conflict-based equivalence (CBE).

2. An indication of whether the conflict was ultimately
due to the most recent decision assignment or to an
earlier decision assignment.

a) If that assignment was the most recent (i.e. at the

current decision level), the opposite assignment (if it has

not been tried) is immediately implied as a necessary

consequence of the conflict; we refer to this as a failure-

driven assertion (FDA).

b) If the conflict resulted from an earlier decision

assignment (at a lower decision level), the search canassignment (at a lower decision level), the search can

backtrack to the corresponding level in the decision tree

since the subtree rooted at that level corresponds to

assignments that will yield the same conflict. The ability

to identify a backtracking level that is much earlier than

the current decision level is a form of non-chronological

backtracking that we refer to as conflict-directed

backtracking (CDB), and has the potential of significantly

reducing the amount of search.

� Let the assignment of a variable x be implied due to a

clause w = (l1 + ... + lk). The antecedent assignment of x,

denoted as A(x), is defined as the set of assignments to

variables other than x with literals in w.

� Intuitively, A(x) designates those variable assignments

that are directly responsible for implying the assignment

of x due to w. For example, the antecedent assignments

of x, y and z due to the clause w = (x + y + z) are, of x, y and z due to the clause w = (x + y + z) are,

respectively:

� A(x) = {y=0, z=1}

� A(y) = {x=0, z=1}

� A(z) = {x=0, y=0}

� Note that the antecedent assignment of a decision

variable is empty.

� The sequence of implications generated by BCP is

captured by a directed implication graph I defined as

follows:

� Each vertex in I corresponds to a variable assignment x = v(x)

� The predecessors of vertex x=v(x) in I are the antecedent

assignments A(x) corresponding to the unit clause w that led

to the implication of x. The directed edges from the vertices in

A(x) to vertex x=v(x) are all labeled with w. Vertices thatA(x) to vertex x=v(x) are all labeled with w. Vertices that

have no predecessors correspond to decision assignments.

� Special conflict vertices k are added to I to indicate the

occurrence of conflicts. The predecessors of a conflict

� The decision level of an implied variable x is related to those

of its antecedent variables according to:

CLAUSE DATABASE AND PARTIAL IMPLICATION

GRAPH

� Figura 1

CONFLICT ANALYSIS PROCEDURE

� When a conflict arises during BCP, the structure of the

implication sequence converging on a conflict vertex k is

analyzed to determine those (unsatisfying) variable assignments

that are directly responsible for the conflict. The conjunction of

these conflicting assignments is an implicant that represents a

sufficient condition for the conflict to arise. Negation of this

implicant, therefore, yields an implicate of the Boolean function

f (whose satisfiability we seek) that does no exists in the clausef (whose satisfiability we seek) that does no exists in the clause

database ϕ. This new implicate is referred to as a conflict-

induced clause.

� We denote the conflicting assignment associated with a conflict

vertex k by AC(k) and the associated conflict-induced clause by

wc(k).

� We partition AC(k) in two sets:

Es. Figure 1 : Λ(x6) = {x11=0@3} and ∑(x6) = {x4=1@6}.

� Determination of the conflict assignment AC(k) can now be

computed using the following definition:

� starting with x=k. The conflict-induced clause corresponding � starting with x=k. The conflict-induced clause corresponding

to is now determined according to:

where, for a binary variable x, x0≡x x1≡x.

� Es. on fig. 1:

NON- CHRONOLOGICAL BACKTRACKING

� Figura 3

FAILURE-DRIVEN ASSERTIONS:

� If wc(K) involves the current decision variable,

erasing the implication sequence at the current

decision level makes wc(k) a unit clause and

causes the immediate implication of the decision

variable to its opposite value. We refer to such

assignments as failure- driven assertions (FDAs).assignments as failure- driven assertions (FDAs).

� Using our running example (Fig. 1) as an

illustration, we note that after erasing the

conflicting implication sequence at level 6, the

conflict-induced clause wc(k) in (5) becomes a unit

clause with x1 as its free literal. This immediately

implies the assignment x1=0 and x1 is said to be

asserted.

CONFLICT-DIRECTED BACKTRACKING:

� If all the literals in wc(K) correspond to variables that were

assigned at decision levels that are lower than the current

decision level, we can immediately conclude that the search

process needs to backtrack. This situation can only take place

when the conflict in question is produced as a direct

consequence of diagnosing a previous conflict and is

illustrated in Figure 3 for our working example. The

implication sequence generated after asserting x1=0 due toimplication sequence generated after asserting x1=0 due to

conflict k leads to another conflict k’.

� The conflicting assignment and conflict-induced clause

associated with this new conflict are easily determined to be:

� and clearly show that the assignments that led to this second

conflict were all made prior to the current decision level.

� In such cases, it is easy to show that no satisfying
assignments can be found until the search process backtracks
to the highest decision level at which assignments in AC(k’)
were made. Denoting this backtrack level by β, it is simply
calculated according to:

� When ββββ = d-1 , where d is the current decision level, the
search process backtracks chronologically to the
immediately preceding decision level. When ββββ < d-1,immediately preceding decision level. When ββββ < d-1,
however, the search process may backtrack non-
chronologically by jumping back over several levels in the
decision tree.

� It is worth noting that all truth assignments that are made
after decision level ββββ will force the just-identified conflict-
induced clause wC(k’) to be unsatisfied.

� For our example, after occurrence of the second conflict the
backtrack decision level is calculated, from (7), to be 3.
Backtracking to decision level 3, the deduction engine creates
a conflict vertex corresponding to wC(k’).

ZCHAFF
UNIT CLAUSE RULE (1/2)

� A clause is implied iif all but one of its literals is
assigned to zero.

� So, to implement BCP efficiently, we wish to find a
way to quickly visit newly implied all clauses that
become newly implied by a single addition to a set of
assignments.

� If the clause has N literals, there is really no reason
that we need to visit it when 1, 2, 3, 4, … , N-1 literals

� If the clause has N literals, there is really no reason
that we need to visit it when 1, 2, 3, 4, … , N-1 literals
are set to zero. We would like to only visit it when the
“number of zero literals” counter goes from N-2 to N-
1. As an approximation to this goal, we can pick
any two literals not assigned to 0 in each clause to
watch at any given time. Thus, we can guarantee that
until one of those two literals is assigned to 0, there
cannot be more than N-2 literals in the clause
assigned to zero, that is, the clause is not implied.
Now, we need only visit each clause when one of its
two watched literals is assigned to zero.

ZCHAFF
UNIT CLAUSE RULE (2/2)

� When we visit each clause, one of two conditions must
hold:

1. The clause is not implied, and thus at least 2 literals
are not assigned to zero, including the other
currently watched literal. This means at least one
non-watched literal is not assigned to zero. Wenon-watched literal is not assigned to zero. We
choose this literal to replace the one just assigned to
zero. Thus, we maintain the property that the two
watched literals are not assigned to 0.

2. The clause is implied. Follow the procedure for
visiting an implied clause. One should take note
that the implied variable must always be the other
watched literal, since, by definition, the clause only
has one literal not assigned to zero, and one of the
two watched literals is now assigned to zero.

DECISION HEURISTICS:

� Decision assignment consists of the determination
of which new variable and state should be selected
each time a decision has to be made. A lack of
clear statistical evidence supporting one decision
strategy over others has made it difficult to
determine what makes a good decision strategy
and what makes a bad one. We have many
strategies available and so it is important tostrategies available and so it is important to
understand how best to evaluate them.

� One possible metrics:

� Consider, for instance, the number of decisions
performed by the solver when processing a given
problem. Since this statistic has the feel of a good
metric for analyzing decision strategies ought to mean
smarter decisions were made, the reasoning goes – it
has been used almost exclusively as the comparator in
the scant literature on the subject.

BUT…

�…not all decisions yield an equal number of BCP
operations!

� As a result, a shorter sequence of decisions may
actually lead to more BCP operations than a
longer sequence of decisions, begging the
question:

�What does the number of decisions really tell us?�What does the number of decisions really tell us?

� The same argument applies to statistics
involving conflicts.

� Furthermore, it is also important to recognize
that not all decision strategies have the same
computational overhead, and as a result, the
“best” decision strategy combination of the
available computation statistics actually be the
slowest if the overhead is significant enough.

CONCLUSION:

� All we really want to know is which strategy is

fastest, regardless of the computation statistics.

� Strategy of ZCHAFF can be viewed as

attempting to satisfy recent the conflict clausesattempting to satisfy recent the conflict clauses

but particularly attempting to satisfy recent

conflict clauses.

OTHER FEATURES

� Like many other solvers, Chaff supports the

deletion of added conflict clauses added to avoid a

memory explosion.

� Chaff also employs a feature referred to as

restarts. Restarts in general consist of a halt in therestarts. Restarts in general consist of a halt in the

solution process, and a restart of the analysis, with

some of the information gained from the previous

analysis included in the new one. As implemented

in zChaff, a restart consists of clearing the state of

all the variables (including all the decisions) then

proceeding as normal.

MINISAT

MINISAT FEATURES

� Unit Propagation with watched literals

� Learning procedure derived by GRASP. The number
of learnt clauses are periodically reduced in order to
avoid memory explosion.

� Non-chronological backtracking

� Activity heuristic:
1. Bumping: every time a variable occurs in a recorded

conflict clause, its activity is increased.

2. Decaying: after recording a conflict, the activity of
all the variables in the system are multiplied by a
constant less than 1.

� Restarts.

